

USER EXPERIENCE ON MOBILE NETWORKS

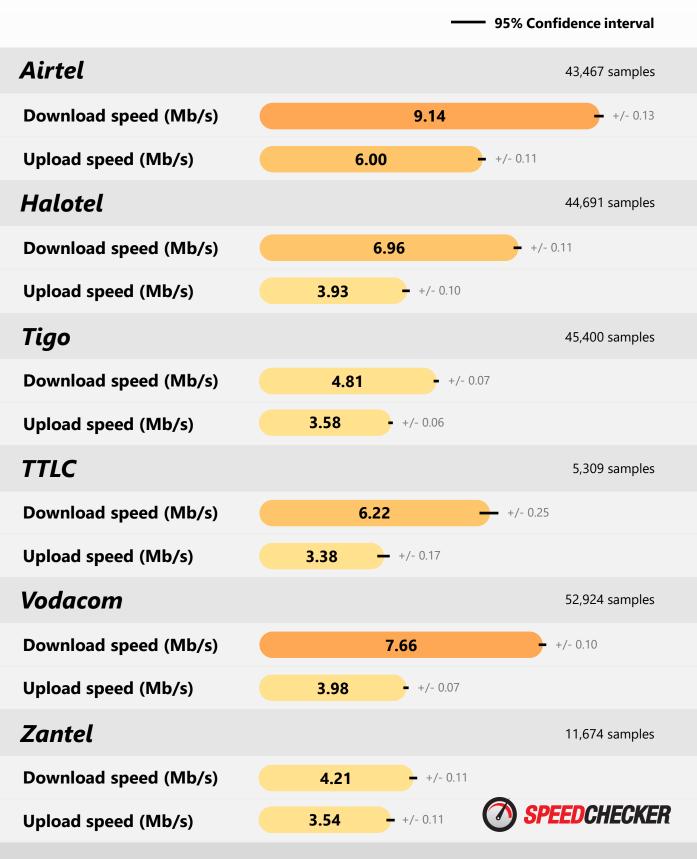
August 2021

ABOUT THE DATA

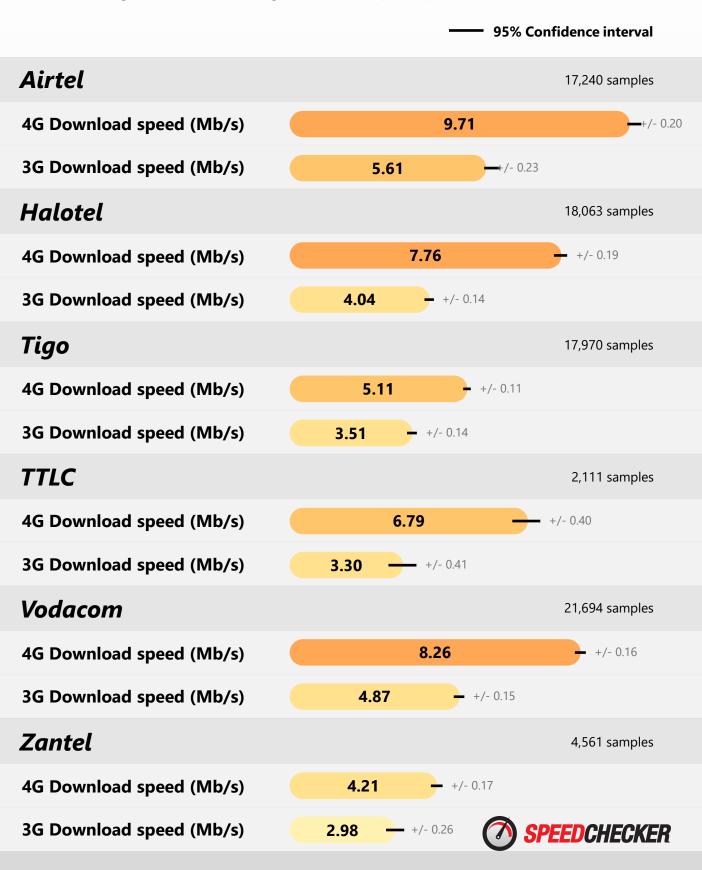
Total number of samples:	203,547
Total number of unique devices:	112,593
Data collection period:	1 August - 16 August 2021

ABOUT THE REPORT

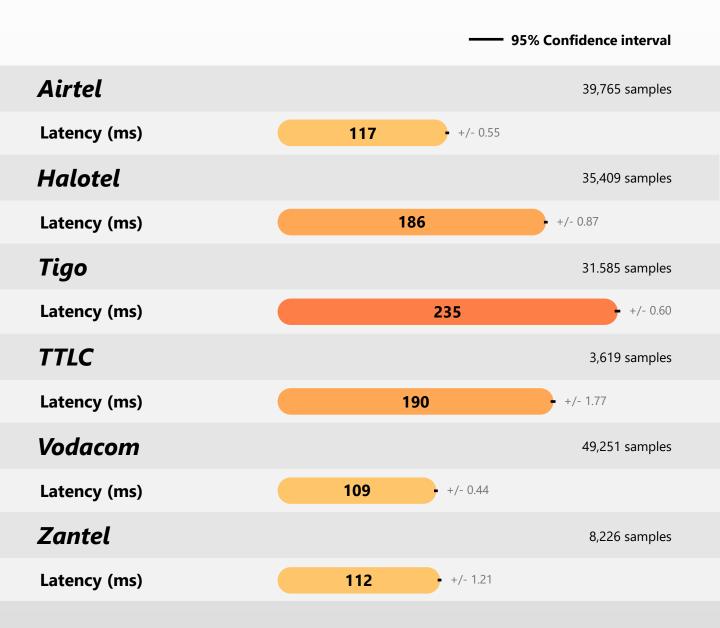
SpeedChecker aims to benchmark operators on the user experience and, therefore, the metrics in this report are designed with this in mind. Users accessing the services on the Internet are affected not only by the quality of the radio access network but also by other factors such as the mobile device performance, network backhaul capacity and interconnections to other networks.


Our <u>methodology</u> is designed to take into account all of those factors. Our metrics do not show the highest possible speeds or the lowest latencies that a particular operator can provide locally. The majority of the content accessed on the Internet is on CDNs and that is why SpeedChecker uses CDNs to perform the tests. Operators who have great radio access network as well as great connections to CDNs offer superior user experience and score better in our reports.

MNO SPEED BENCHMARK


The following table shows average download and upload speeds per MNO.

The measurements were made across the whole country and across the whole spectrum of available Radio Access Technologies (3G, 4G, 5G if available).


MNO 4G AND 3G DOWNLOAD SPEED BENCHMARK

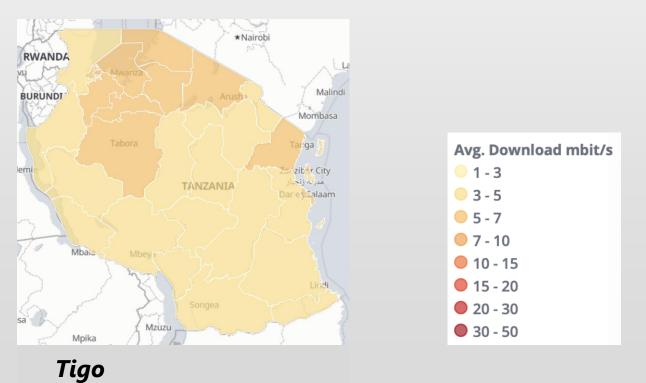
The following table shows average download speed per MNO and particular RAT.

MNO LATENCY BENCHMARK

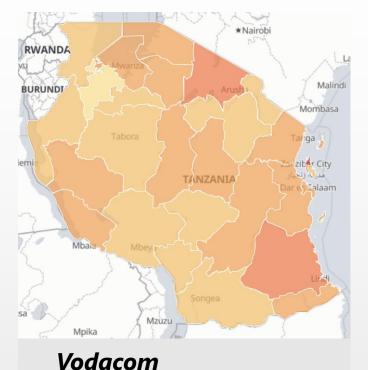
As described in our <u>data collection methodology</u>, latency is measured to the CDN endpoints. Operators who interconnect with CDNs well tend to offer better user experience in latency-sensitive applications as well as score well in our latency comparison.

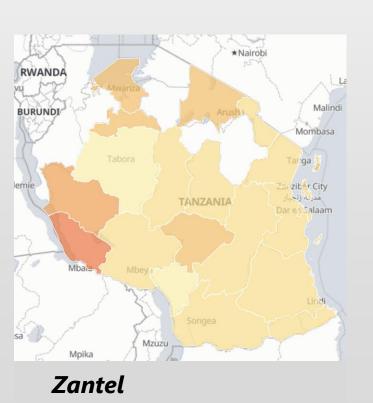
MNO 4G AVAILABILITY BENCHMARK

Our 4G availability metrics correspond to the % of the tests done on 4G vs 3G. This metric does not represent 4G coverage.


REGIONAL COMPARISON OF MNO DOWNLOAD SPEED PERFORMANCE

Airtel


Halotel



REGIONAL COMPARISON OF MNO DOWNLOAD SPEED PERFORMANCE

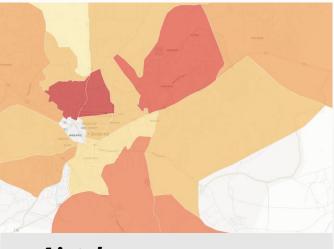
TTLC

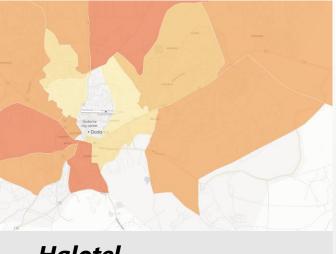
Avg. Download mbit/s
0 1 - 3
0 3 - 5
<u> </u>
🦲 7 - 10
🛑 10 - 15
0 15 - 20
0 20 - 30
0 30 - 50

AVERAGE DOWNLOAD SPEEDS IN DIFFERENT REGIONS OF TANZANIA

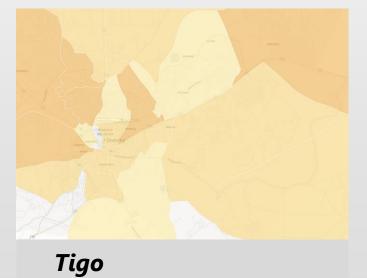
The following table shows the average download speeds in different regions of Tanzania. The 2nd column is an average of all MNOs in a particular region.

The fastest regions are at the top of the table measured in Mb/s.

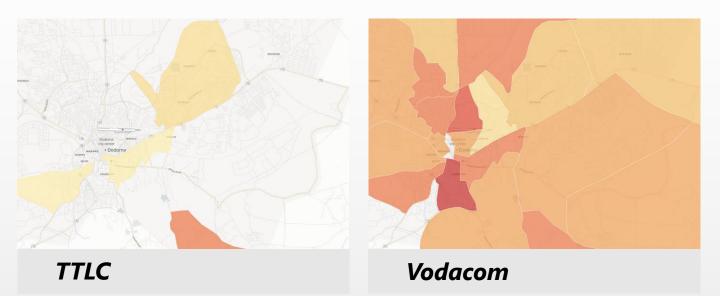

Region	All operators	Airtel	Halotel	Tigo	TTLC	Vodacom	Zantel	Test count #
Arusha	8.75	10.21	8.10	5.05	4.68	10.41	6.04	5,690
Dar es Salaam	7.88	9.62	7.75	5.08	7.61	9.00	4.67	69,605
Dodoma	6.58	8.04	6.76	4.71	5.09	8.05	3.44	11,440
Geita	5.47	6.19	6.12	5.32	4.20	4.86	-	3,071
Iringa	6.63	10.04	7.62	4.58	7.14	6.73	5.60	3,818
Kagera	5.66	7.97	4.34	3.28	1.59	6.79	-	2,220
Katavi	6.93	8.03	6.37	4.35	-	7.11	9.25	1,717
Kigoma	5.64	7.73	5.67	4.65	3.60	5.69	-	2,794
Kilimanjaro	5.98	10.47	6.41	3.75	3.23	6.60	3.52	4,258
Lindi	6.53	10.48	5.18	4.23	5.20	11.99	3.57	1,065
Manyara	5.65	7.81	5.49	3.59	4.31	5.89	-	1,486
Mara	6.86	7.79	6.34	5.03	2.14	7.78	-	1,527
Mbeya	5.70	7.42	5.67	4.39	3.50	6.27	3.62	9,606
Morogoro	6.82	9.42	7.63	4.93	3.63	7.34	3.34	7,637
Mtwara	5.44	9.72	4.79	4.11	1.27	7.98	3.40	2,503
Mwanza	7.05	7.90	6.88	5.84	6.83	7.38	5.24	11,143
Njombe	5.47	13.27	5.09	3.06	1.83	6.26	1.75	2,109
Pemba North	3.97	-	3.16	4.26	-	-	3.80	321
Pemba South	5.46	-	3.46	4.79	-	7.74	6.36	352
Pwani	6.69	8.27	6.97	4.66	7.09	7.74	4.12	1,566
Rukwa	6.79	10.53	6.00	4.26	4.22	7.66	10.84	1,329
Ruvuma	5.16	8.84	4.00	4.88	3.09	5.93	3.94	2,467
Shinyanga	6.95	9.70	7.86	5.70	1.61	5.84	5.66	2,256
Simiyu	7.80	12.49	6.07	5.10	-	8.18	-	902
Singida	7.29	11.25	9.99	3.15	2.66	7.45	4.20	2,134



Region	All operators	Airtel	Halotel	Tigo	TTLC	Vodacom	Zantel	Test count #
Tabora	6.91	9.44	6.65	6.06	2.15	6.68	2.74	2,931
Tanga	7.09	9.47	8.86	5.50	3.40	8.55	4.67	4,177
Zanzibar North	10.71	-	9.24	6.29	-	25.73	6.22	73
Zanzibar South and Central	5.12	9.39	5.78	4.46	_	6.19	3.83	369
Zanzibar West	6.03	8.61	7.69	4.34	11.58	7.96	4.04	7,241

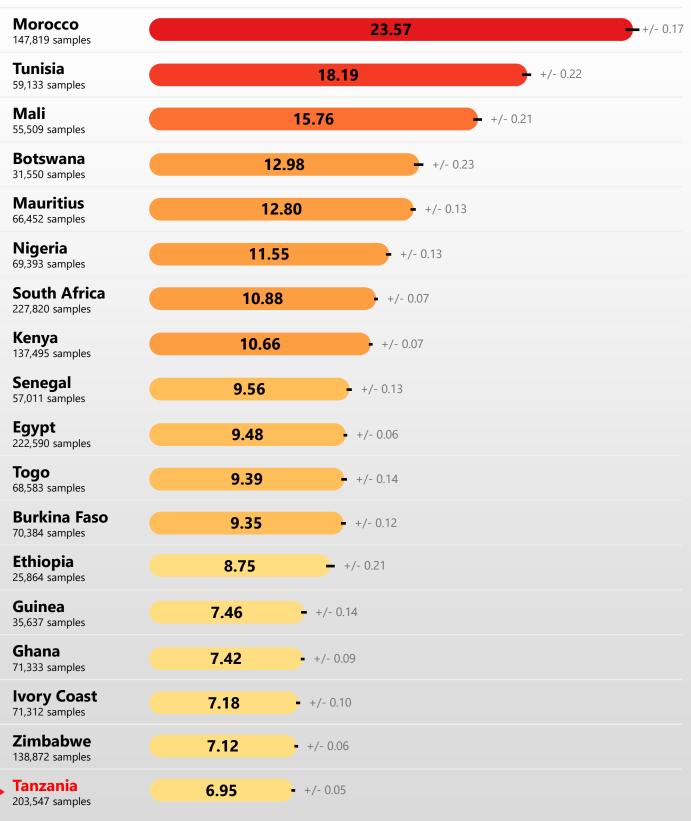

MNO DOWNLOAD SPEED PERFORMANCE IN DODOMA

Airtel



Avg. Download mbit/s
0 1 - 3
0 3 - 5
<u> </u>
0 7 - 10
0 10 - 15
0 15 - 20
0 20 - 30
0 30 - 50

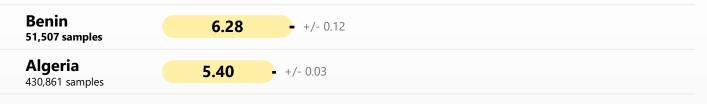
MNO DOWNLOAD SPEED PERFORMANCE IN DODOMA


No data	Avg. Download mbit/s 1 - 3 3 - 5 5 - 7 7 - 10 10 - 15 15 - 20 20 - 30 30 - 50

Zantel

DOWNLOAD SPEED (Mb/s) AFRICAN BENCHMARK

95% Confidence interval


Continue on the next page

DOWNLOAD SPEED (Mb/s) AFRICAN BENCHMARK

— 95% Confidence interval

-

ARE YOU LOOKING FOR MORE DETAILED CROWDSOURCED DATA IN TANZANIA?

What you see in this free report is a high-level snapshot of the crowdsourced data we offer to our clients.

Our crowdsourcing system contains billions of data points collected from mobile devices worldwide.

Unlike our competitors, we can sell access to the data with different granularity: Our clients can pick data they need with significant cost savings associated with a reduced scope.

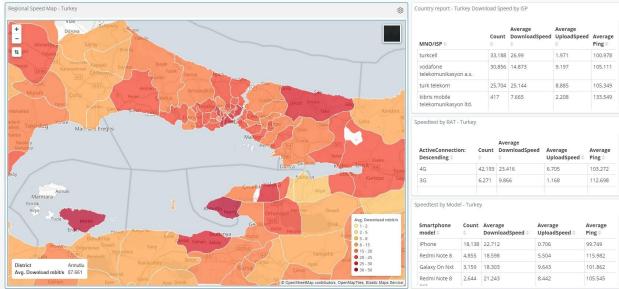
FLEXIBILITY IS IN OUR DNA

Our customers value our flexible and modular approach in delivering our solutions. There is no one size fits all in providing crowdsourcing projects. Customers increasingly require tailored solutions which will satisfy all technical, operational and legal requirements.

With reduced scope comes reduced price. Our Basic KPI set is a more cost effective way to get speed test data. Our Advanced KPI set is more comprehensive with 100+ active and passive KPIs.

Crowdsourcing is about trade-offs. Do you want more tests or do you want tests to run longer ? Do you want to collect data passively without impacting the network and user bandwidth or run active tests which will stress and assess the capacity better?

Do you want us to host the solution for fast & easy deployment or do you require data to be within your data center for compliance purposes?


You not only want the data but you also want your own app or web-based tester? We can do it all. Our team can produce iOS, Android, HTML, Windows and MAC clients tailored to your specific needs.

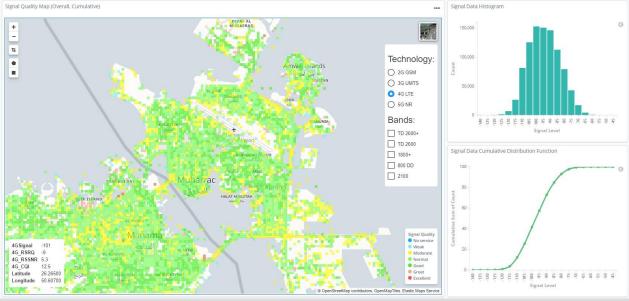
CONTACT US FOR MORE INFORMATION

BASIC CROWDSOURCING SYSTEM

Our Basic Crowdsourcing System offers full analytical options like our Advanced system but with the limitation of a smaller Basic KPI set.

Internet Speeds

④ See Full Screen image


ŝ

ŝ

Basic KPIs include speed test data along with device and network information but do not contain Streaming Video, detailed Radio KPI's nor passive measurements.

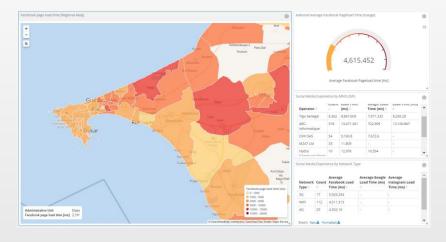
ADVANCED CROWDSOURCING SYSTEM

Step up from our Basic system to our Advanced Crowdsourcing system with more than 100+ KPIs to analyse

Coverage Analysis

- Statistical research on the basis of millions of crowdsourced samples
- Multiple signal metrics RSRP, RSRQ, SNR, RSSI, CQI
- Split by MNO, Radio Access Type, Band (down to individual ARFCN)
- Possibility to filter by: Speed (e.g. High Speed Scenario) and Indoor

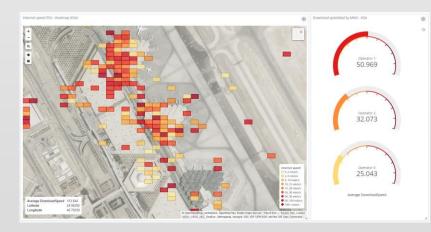
ADVANCED CROWDSOURCING SYSTEM



ISP		# of tests		prcentile of V Definiton	1040	[ms]		Rebuff rate (#		Speed [Mb/s] =
Ope 1	rator	32.35	4	4				0.079		\$0.809
Ope 2	rator	24.05	7 4	4		3337		0.071		37.609
Ope	rator	13,10	4	4		3261	3261 0.083		37.419	
outul	be by	Netwo	k Type							
ISP	# of test		tart time ns] =	Rebuffer rate [#] 0	Spee (Mb/			Quality		laying
WIF	45.8	07 3	400	0.069	46.1	48 4				
4G	18.2	05 3	264	0.082	41.5	78 4				
3G	4.55	6 3	313	0.115	24.5	33. 4				
5G	203	2	342	0.015	96.6	47 4				
5G	203	2	342	0.015	96.6	47 4				
			342 Model	0.015	96.6	17 4				
	bê by		Model	0.015.				ite [#] =	Spee	d (Mb/s) :
outul ISP	bê by	Device	Model					ite (#) =	Spee 60.8	
outul ISP Gala	be by	Device te5	Model # of tests	s Start tim		Rebuff		ite (#) =		
outui ISP Gala Gala	De by	Device te5 te9	Model # of tests 3.403	s : Start tim 2177		Rebuff 0.053		ite [#] =	60.8	14
ise Gala Gala Gala	De by I I Ng Ng Ng Ng Ng	Device 685 688	Model # of tests 3.403 2.995	 Start tim 2177 4371 		Rebuff 0.053 0.033		te (#) 0	60.8 32.00	54 14

YouTube Quality

YouTube quality dashboard provides information about YouTube regional performance. It features metrics such as YouTube playing definition, buffering time, start delay.


€ See Full Screen image

Social Media Experience

Social media experience dashboard shows regional performance of major social media platforms such as Facebook, Google and Twitter.

⊙ <u>See Full Screen image</u>

Point of Interest Performance

Reveals Internet performance in specific important locations such as Airports, Malls, Stadiums and other places located outside of drive test routes.

♀ See Full Screen image

ADVANCED CROWDSOURCING SYSTEM

1 1 200 0 1 1 200 0 1	2001140 2010-00 2010 Stimutory prevent	2044	
Outages - Number of affected users			1
1,200			
and the base of th	A strategy of the state of the		ì
and the second state of th	2004/10/ 2014/01/2014	01 2021-64-21	
	2020-11-0 Ditterestang per day	01 2021-54-51	
en en en en en en en en en en en en en e	Øtimestamp pår day		
en en en en en en en en en en en en en e		01 2021-64-01 Coverage Gap (s) = 5-708	
an an an an an an an an an an an an an a	Otimestamp per day Coverage Loss Events [#] ::	Coverage Gap [s] =	8
angen - Linen (Table) Ungen - Linen (Table)	Otimestamp per day Coverage Loss Events (#) = 654	Coverage Gap [1] = 5.708	
angen - Linen (Table) Ungen - Linen (Table)	Stimsstorp per day Coverage Loss Events [#] : 654 735	Coverage Gap (s] = 5,708 3,879	
and a second sec	©timestang per day Coverage Loss Events (#) : 654 738 685	Coverage Gap (s] = 5.708 3.979 3.657	

Outages

Network Availability is the number one metric for any network. While OSS data provides overall information, crowdsourcing is able to spot exact locations where subscribers are not able to attach to the network.

⊙ <u>See Full Screen image</u>

Voice Quality

The Voice Quality dashboard shows the user issues visualized on a map to spot any areas where users are making calls and their quality is not satisfactory or where calls are being dropped.

€ <u>See Full Screen image</u>

Spectrum Usage

Spectrum utilization dashboard allows the monitoring of how the available spectrum is used in various locations. It may reveal the load balancing situation or the fact that individual band are overloaded or unloaded.

DATA COLLECTION METHODOLOGY

Our data is collected from end user devices running Android and iOS systems. All measurements are executed towards a CDN that has a large geographical footprint and hosts a significant part of the content that is being accessed by the users. This ensures our results are a good approximation of the user's actual quality of experience.

All measurements must contain accurate location information using GPS or wi-fi geolocation methods. Measurements are considered only from the apps that have been approved by SpeedChecker. Submitted measurements are checked to see if they are within expected ranges and additional security precautions are implemented to ensure measurement data is not being manipulated.

The data collection process aims to deliver a single measurement sample from every device in our crowdsourcing system device pool and we strive to remove all duplicates. Due to privacy settings on some users phones we cannot reliably detect unique devices therefore some devices have contributed to more than 1 measurement into this dataset.

MEASUREMENT METHODOLOGY

The methodology is based on the concept of the <u>ITU-T Q.3960 (2016)</u> "Framework of Internet related performance measurements" and "Supplement 71 to ITU-T Q-series Recommendations".

This test methodology aims at delivering an accurate measurement of the maximum bandwidth available over a given internet connection. This is achieved by transferring multiple parallel data streams over separate TCP connections within a predefined amount of time. The transferred data consists of randomly generated data with high entropy.

#	Parameter	Unit	ITU Range	Current Setting
1	Number of parallel threads	#	1 ≤ n ≤ 10	Dynamic addition from 1 to 10
2	Duration of pre-test	S	0 ≤ Tp ≤ 5	1s
3	Duration of the downlink test	S	5 ≤ Td ≤ 15	5s
4	Duration of the uplink subtest	S	5 ≤ Tu ≤ 15	5s
5	Number of 'pings' during delay subtest	#	5 ≤ p ≤ 20	p = 10

CONTACT US FOR MORE INFORMATION

